Ultimate Godot Game Al
for Beginners

Game Al - An Introduction
Don’t skip this!
Welcome, welcome!
Course Structure
How can you get the most out of this course
What is game Al and why should you care
Different types of Game Al
Decision Systems
Understanding the environment
How does the Al navigate in the game world
Grids
Graphs
Navmesh
Finite State Machines
General concepts
How to implement a FSM in Godot
Mini-example with the created one
Pathfinding
How pathfinding works
Anatomy of a Pathfinding Algorithm
The Space
The Queue
Movement Patterns
Breadth-First Search
Reconstructing the Path

PROs/CONs of Breadth-First Search

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

o N N N NN

~

10
11
12
13
13
15
18
19
19
21
21
21
21
22
23
25

PROs
CONs
Navigation mesh in godot
Sensors
Sensing the Game World
Implementing Range
Field of View
Raycasts
Hit Detection
Project State Machine Al
What we will be creating (5min)
Defining the AI (5m)
Creating the FSM (10m)
Hooking up the FSM with the code (10min)
Implementing Actions (20min)
Implementing Cover (15min)
Putting everything together (20m)
Bonus
Quick introduction to programming
Data Structure Concepts
What are Data structures
The Queue
The Graph
Implementing Graphs
Directed graph

Graph traversal methods

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

25
25
26
28
28
29
30
31
32
33
33
33
33
33
33
33
33
34
34
38
38
38
39
39
40
VAl

Game Al - An Introduction

Don’t skip this!

Welcome, welcome!

Welcome! I’m so glad you are here. I’m Adrian and I will be your coach through
your Al journey using Godot Engine.

You are now on your way to properly understand Artificial Intelligence in Godot. By
the end of the course, you will be able to implement your own Al system in Godot,
regardless of your experience level.

But there is more - by finalizing this course you will understand how the AI
systems work under the hood, how to tweak them, how to customize them to your
liking and more.

Course Structure

Now, let’s look at how you can get the most out of this course. This course has 7
modules as following:

- Introduction - which you are currently watching

- Understanding the Environment - is about how the AI Agent perceives the
environment it can move in

- Finite State Machines - are the concepts, implementation and a small
example of one of the most common ways to implement AI decision making

- Pathfinding - is about the algorithms involved in finding a path from A to B
using the information from the environment

- Sensors - are all about how the Al sees and feels the targets, items and
what’s around it

- And the final project - which will be a full implementation of an AI system

- There is an extra module, the Bonus module, which has an introduction to
GDscript and Data Structure Concepts

Besides these modules, the course contains PDF booklets for every chapter in the
modules. There is also a project that has all the code, assets and everything you
need to browse the examples and the final project.

How can you get the most out of this course

So, how can you get the most out of this course?

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

Beginner - if you are a beginner, I strongly suggest you finish the welcome module
and then head over to the bonus one to do the introduction to GDScript and the
Data Structures. After this, you can come back and start with module 2. Try not to
skip anything as the modules are related and you might need information
presented in a previous one.

Medium - if you already know GDScript and Godot, start directly from module 2.
You will be able to get a solid grasp on all the Al concepts to get you started.

Advanced - if you know Godot and some Al, feel free to browse through the course
and watch the modules that seem interesting to you. You can also just head straight
to the final project.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

What is game Al and why should you care

Here we are, in 2022 and most of the top games are multiplayer. A legit question
that everyone has is “why should I learn Al when I can make a multiplayer-only
game?”. And this is a very good question as well.

The main issue with making multiplayer games only is that all of them compete on
a finite resource and that’s not money. It’s time. Which is limited. Most of the big
multiplayers already saturate this market.

People might get bored and change, right. But when their friends are still in that
game, when they invested hundreds of dollars in items, the decision to let the game
go is even harder. This is called sunken cost fallacy and it’s real.

Let’s say your multiplayer is successful. In that case, a skyrocketing game will face
a totally different set of issues. From the need to implement lag mitigation
techniques to maintaining a lot of servers and handling cheaters, as your game
grows in popularity things don’t get easy.

In most cases, an indie multiplayer-only game will become a dead on arrival game.
That means that the players at launch won’t be enough to make the world feel alive
and eventually get bored and leave before new players join. When the new ones
join, they will be greeted with a lot of tumbleweeds.

I know this best since I experienced it first-hand.
How can Al, or Artificial Intelligence, help your game?

If your dream is to create a multiplayer game, here’s how Al can give your game a
strong competing chance. By implementing Al Agents that will fill in for the
players, the game will become alive.

The players will replace them one by one when joining and those already in will
experience a world that has a lot of opportunities.

If you are working on a singleplayer game, then AI can help your game A LOT. Of
course, not all single player games do need it. For example puzzle games. But, the
majority does benefit from a proper Al implementation.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

Different types of Game Al

When people discuss Al, automatically they think about Enemies. But that’s only
one way the players experience Al systems in modern games.

What are the most common types of AI?

Als as Enemies - this is the most found implementation in games. Usually,
everything that comes to you and shoots to kill is most likely an Enemy. Enemies
come in different flavors to spice up the gameplay: aggressive, defensive, tactical.

Als as Companions - is there a Non-Player Character following you? Then, most
likely you got yourself a companion. Be it either for a specific mission or a
squad-based game, companions play an important role. Games like Mass Effect or
Gears of War have a lot of mechanics focused on companions.

Do it right, and your game will benefit a lot. Have companions going through walls,
dying randomly and failing the mission - and your game’s player will get a bad
experience.

Als as your own units - are you issuing orders to a squad of units in a Real-Time
Strategy game? Then, most likely, you are ordering smart Al Agents a tactical
decision and they handle the movement, patrolling, attacking or any other action
they have.

Als as your own character - are you playing a top-down role playing game where
your character moves around a dungeon? Most likely the Al is controlled by a
pathfinder that decides where to move exactly, based on your specified move
location.

Als as invisible helpers - what if I told you that a game that has 0 non-player
characters and in fact, any other moving parts - has AI? It’s true. I'm referring to
Jonathan Blow’s “The Witness” where the Al was used to debug the map to find out
the walkable areas.

Als can take many forms, the limit being the imagination of the developer. My hope
is that by getting all the information I provide in this course you will be on your
way to make Great Al Systems that will improve your game.

Next, let’s look at how an Al can handle decisions.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

Decision Systems

Before we can discuss decision systems we must first look at what makes an Al
work - what are its parts.

This is possible because of the following systems:

- The Brain: it’s responsible with the decision making

- The Senses (or sensors): are the AI’s way of detecting enemies, obstacles
and more. They are linked with the brain to provide the accurate information
in real time

- The Body: receives actions from the Brain and executes them

- The Legs: are used to move the character. They implement special
pathfinding algorithms that compute the route from A to B for the Al to take

Let’s focus on the brain of the AI - the decision systems.

Finite State Machines - This Al is used a lot. Actions are mapped to states and the
Al can be in a particular state at a specific time. The states are interconnected
together with transitions that get triggered when a particular change happens to
the agent.

Games: DOOM, Quake

Behavior Trees - BTs are very common in most game engines, having direct
integration in Unreal Engine. Their main selling point is that a designer can create
an Al system without having to interact with any code piece.

They are also very flexible to use.

Games: HALO

Planning - This one is very similar to the State Machines, but the main difference
is that the states are not connected between them. This gives total freedom for the
Al to pick any available option.

Games: FEAR

Utility AI - The Utility Al does not have a particular structure, but rather a set of
rules. It’s mostly used to handle complex actions like an RPG character that has

multiple skills and needs to pick one or another based on the current situation.

Games: Dragon Age: Inquisition

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

Understanding the environment

How does the Al navigate in the game world

The AI Agent is not only just a collection of decision-making algorithms. Those
decisions need to be applied to specific contexts. For example, the Al needs to move
around, avoid obstacles, go to certain targets, etc.

To achieve this, the Al need to be able to “understand” the environment it’s in:

- Where it can move or cannot
- Where are the points of interest e.g. cover points, important locations
- Where is the enemy

While the player can perceive the environment by visual cues like 3D objects in
forms of paths, obstacles the AI Agent needs to get a processed version of that in a
language that it understands.

If we use the exact environment as-is, the AI will have a hard time computing
everything because usually the environments are too complex. Even in 2D games,
the complexity of the visual world is too much to handle for an Al instance. I’m not
saying that one AI cannot handle it, most likely it can. But when we are discussing
Al Agents, we always need to take into consideration the amount of CPU used when
running 20 agents, 50 agents.

We need to use a simplified version of the world. Here are the most common ways
to achieve this:

- Grids - a set of rows and columns that form a 2D table

- Graphs - a collection of points that are connected between them

- Navmeshes - a simplified environment mostly auto-generated by modern
game engines

Let’s look at these 3 and see their Pros and Cons.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

Grids

Grids are the most common way to create 2D environments but don’t be fooled by
their 2D capabilities as they can also be used in 3D games that are limited to a flat
surface.

A grid is a set of lines and columns that are put together to form a 2D table. Each
point can be referenced by using a pair of row/column indexes.

If you want to learn how to implement grids, head over to the bonus module and
look at Data Structures.

What are the PROs and CONSs of using grids in your game?

PROs of a grid are:

It's easy to use. Create a 2D array of elements and it will already work with
the map structure (if the map was designed to support a grid in the first
place).

It supports real time changes. Does your game have actions that can change
the map? By having a grid you can easily set what’s walkable and what’s not.
Most game engines have grids implemented already, even with editing
capabilities. They are called tilemaps and mostly used for 2D games. Godot
also has a 3D alternative called the GridMap.

CONs of a grid:

It has a fixed shape. It will always be square shaped. Of course, you can
disable the sides or skew it to give it more variation.

It cannot support height variations. Does your game map have hills, valleys,
etc? Then a grid might not be what you are looking for.

It might not create enough variation. Having a grid city might not be fun.
But there are cities with grid layouts like New York which are interesting.

If a gridlike structure sounds too restrictive for you, then you might want to try
Graphs. Let’s look at them in the next chapter.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

Graphs

Do you want to make dynamic cities, maps that have height variations, even
breakpoints? Then graphs might be the data structure you are looking for!

A graph is a data structure made out of a collection of nodes and edges. The nodes
are the endpoints (containers) where the edges are the connections between them.

Q " 2 NODES
! A
A =
@ ;rr .-'/ -"-'.-
b __fl- /z ._.-".

Ly Y S

EDGES

Using graphs we can create city streets, map regions or even grids.

To find out more about how they can be implemented and used, go to the graph
section in the bonus module of this course.

PROs of Graphs:

- Can be used to model any type of terrain, height, street intersections, even
grids.
- Can be easily updated with new changes.

CONs of Graphs:

- Harder to work with than grids - the game needs to have a way to map all
the points on a graph.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

Navmesh

Navmesh Display
Show NavMesh |
Show HeightMesh

The navigation mesh is one of the most common ways for the AI Agent to navigate
on the map. Its implementation is found in most modern game engines such as
Godot, Unity and Unreal.

A navmesh creates a simplified model of the 3D objects that are walkable using
simple polygons and connects them. Then, when queried for a path, it quickly
determines a way using a pathfinding algorithm such as A*.

PROs of a navmesh:

- Already implemented in most modern game engines.
- Easy to use - one button click.
- Optimized for efficiency.

CONs of a navmesh:

- Supports only a particular type of map - either made of continuous meshes
or a terrain. Does not support grid, hexagon, or a totally different map
concept

- Not customizable. All the logic of how the movement path is computed is
inside of it.

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

Finite State Machines

General concepts

A Finite State Machine is a system that uses States and Transitions to describe
complex patterns that can be used in creating Al behavior, animations and more.

A FSM is one of the common ways to implement decision logic for the Al

Each state represents an action (in the case of an AI) or an animation. They are
interconnected by transitions and to move from one to another state there needs to
be a fulfilled condition.

- STATE

"
-

HOVE IDLE

x'\x_‘ /_IR.
/ T TRANSITION
N\ /

Behind the scenes, a FSM is a graph-like structure where its states are the nodes
and its transitions, the graph’s edges.

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

Finite State Machines are one of the first ways to implement AI Agents that
appeared. It’s commonly used today as it fits a lot of cases. It does have
PROs/CONSs.

PROs:

- Easy to use & understand
- Fast

CONs:

- Can get out of hand quickly if a lot of states are added
- Itis hard to maintain for complex structures
- Itisnotreusable, as its parts are tightly linked together

There are ways to mitigate these issues, using Hierarchical State Machines. The
main difference between the classic ones is that the Hierarchical ones have nested
states inside states. Let’s call them state ception.

For the final project we will use a finite state machine from a library but for the
next example we will implement a simple one from scratch.

It’s important to implement a FSM to understand its inner workings. Let’s find
them out right now.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

How to implement a FSM in Godot

Now that we have covered the basics of a Finite State Machine, let’s look how one
can be implemented using GDScript.

Note: there are many ways to implement a Finite State Machine in GDScript. This is
one of them.

We will have 2 types of scripts:

- The main FSM - which is responsible for changing and running the states
and also keeping track of the values in a small database and also
- The others - are the actual state implementations

Let’s look first at the finite state machine.

extends Node

class_name CustomStateMachine
export(String) var entry_state
var current_state

var db = {}
var state_list = {}

func _ready():
for state in get_children():
state.fsm = self
state_list[state.name] = state

change_state(entry_state)
func _process(delta):
if current_state == null:

return

if current_state.has_method("process"):
current_state.process(delta)

func _physics_process(delta):
if current_state == null:

return

if current_state.has_method("physics_process"):

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

current_state.physics_process(delta)
func change_state(new_state):
if current_state != null:
if current_state.has_method("exit_state"):
current_state.exit_state()

if !state_list.has(new_state):
return

current_state = state_list[new_state]

if current_state.has_method("enter_state"):
current_state.enter_state()

func set_value(value_name, value):
db[value_name] = value

func get_value(value_name):
if db.has(value_name):

return db[value_name]

return null

This script can be attached to a node that will contain all the states in the FSM.

Next, let’s look at the structure of a state.

extends Node
var fsm:CustomStateMachine

func enter_state():
print("Entered ", name)

func exit_state():
print("Exited

, hame)

func process(delta):
check_conditions()

func check_conditions():
pass

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

For each state, we can create individual children nodes and create scripts similar to
this one, but having specific commands.

In the next video let’s look at a small example that uses this implementation.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

Mini-example with the created one

In this FSM example we will use 3 states: IdleState, MoveState and FireState. Every
state will be connected with each other and will trigger transitions when specific
conditions are met.

Let’s configure the FSM example script first. Here, besides updating the UI, we
need to provide the values is_ moving and is_ firing to the custom state machine.
These will be used to trigger the transitions.

Now we need to create 3 new nodes, IdleState, MoveState and FireState. Each with
its own script. The scripts themselves will be very similar to the one implemented
earlier.

In the idle state, we need to check the values of the finite state machine for

is_ walking or is_ firing. If one is active, the fsm needs to trigger a state change. It’s
good to break the code execution using return. Otherwise, there might appear
issues with both conditions being true at the same time.

In MoveState and FireState the conditions are a little different. As long as their
initial trigger is TRUE, we need to keep the current state up. But, as soon as the flag
turns false, it’s time to change it to the proper state.

With this you have completed the Finite State Machine module. Congrats! While
FSMs can be easy to use, they are powerful and can handle a lot of Al types.

Let’s find in the next module how to get an Al from position A to position B using
pathfinding!

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

Pathfinding

How pathfinding works

Finding the path, or the sequence of steps, from A to B might not be as easy for an
Al Agent as it is for a human. Luckily, we have pathfinding to save the day.

Pathfinding is the method of searching the shortest path from a point to another.
At the core, pathfinding searches a graph (see the bonus section, data structures)
starting from one of its nodes and, from neighbor to neighbor.

An algorithm that appears everywhere in gamedev is A*. In real-life use cases, this
algorithm is mostly hidden behind layers upon layers of other systems that make
use of it.

And it should be simple - because otherwise we will be reinventing the wheel over
and over again. The most common issue here is that while modern game engines
do provide a simplified process to it, it removes the proper understanding
regarding this system.

Why is this a possible concern for a game developer? Because games usually need
special cases like custom maps with hexagons, unique features and more. And just
by using the tools at hand that task might be close to impossible.

Behind the pathfinder

At the core of any pathfinding solution, there are two main concepts:

DOMAIN + ALGORITHM

The Domain - Where it happens

Don’t get tricked when thinking that the space means the terrain heightmap or the
plane where the AI Agent needs to find its way. The space is the representation of
that space in a way that is:

- Fast - having the full environment for running the algorithm over and over
again is not really doable in a game project. We need a simplified version of
it, similar to a High-Poly 3D Object’s Low-Poly counterpart.

- Reliable - being fast but inaccurate is not ideal as well. Having Als running
through walls and other obstacles clearly diminishes the player’s game
experience.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

- Stored properly - if we write the simplified version on a piece of paper it
won’t help our CPU process it. We need to use a proper data structure to hold
all of this newly generated information.

The Algorithm - How it happens

There are many algorithms capable of doing pathfinding. Most of them work very
similar to one another. The main difference is their implementation complexity
and their CPU usage.

They can be categorized in two types:
- UNINFORMED -> does not know details about the map, deals with the
situation as it unfolds (when an obstacle is encountered)
- INFORMED -> has additional information and does something extra for
each search step

When speaking of pathfinding A* is the industry-standard because it produces fast
results.

A* is an algorithm that belongs to the INFORMED type. That means, in order to
properly run, A* does require more information about the map than just the

obstacles.

In the next chapter let’s look at a pathfinding algorithm, how it works and how it’s
implemented.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

Anatomy of a Pathfinding Algorithm

How does an Al know how to get from point A to point B on a map? What is the code
sequence that enables that? The code sequence is an algorithm, and there are many
pathfinding algorithms out there.

In this chapter we will look at a simple pathfinding algorithm called Breadth-First
Search or BFS. BES is an UNINFORMED algorithm that deals with the situation at
hand. Its end result is a path between a starting node A, and a final node B.

Let’s deconstruct the algorithm and see how a pathfinder works!

The Space

First, we need a space (or a domain). We will use a grid because it’s one of the
easiest ways to implement it. Any position on the grid can be referred to using 2
indices: row index / column index.

The grid’s elements will be marked with numbers as follows: 0 for empty space and
-1 for wall.

The Queue

An integral part of the BFS algorithm, the Queue is a list that only allows elements
to be added at the end of it and removed only from the beginning of it. You can find
more about this data structure in the Bonus module - Data Structures.

For now, keep in mind that the queue acts like a real life cinema queue.

Movement Patterns

Our Al Agent will be able to move in 4 directions. This can be easily scaled up to
eight directions, or even more.

As an example, let’s say the Al is at position: 3, 3

To move:

- Up(3-1,3]=>[2,3]

- Down [3+1, 3] => [4, 3]
- Left[3,3-1] => (3, 2]
- Right [3, 3+1] => 3, 4]

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

Obs: for the same pair of values [3, 3] which represents the current position, if we
add another set of numbers we can generate the end values which will result in the
nearby positions.

For this, we can use direction lists. These are 2 lists that represent a X, Y pair for
each direction UP, RIGHT, DOWN, LEFT. If we take each one and add it to the
current position, we will end up with the next positions.

Direction List Table:

direction up right down left
dx -1 0 1 0
dy 0 1 0 -1

Or, more specifically:

dx=[-1,0,1,0]
dy=[o0,1,0,-1]

Given an x / y coordinates, if we apply the following directions we will get the four
possible moves: UP, RIGHT, DOWN or LEFT (in this order)

Breadth-First Search

Let’s do a recap: we have the space which is a grid, we have the movement pattern.
We also need a data structure called Queue.

Let’s go through the steps performed by BFS and after, let's look at some examples.

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

Step | Action

1 add the starting position to the Queue

2 while the Queue is not empty

3 get the first position from the Queue

4 if the position is the destination, exit

5 get the positions possible from the combination of the

current position / directions using dx/dy lists

6 fill the positions with the next step’'s value

7 add the valid ones back to the Queue

8 go to step 2

Running a full BFS will generate a filled grid with how many steps are needed from
position A to reach that particular one. To get the steps sequence, we need to do
one more step which is reconstructing the path.

Reconstructing the Path

The last step of the Breadth-First Search is to reconstruct the path so that we can
use it later to move the AI Agent where we need it to be.

To do this, we need to use a recursive function. A recursive function is a function
that calls itself in it. More about this in the Bonus section, introduction to GDScript.

Don’t worry if that sounds complex, we will take a look into it very soon!

reconstruct_path(current_x, current_y, start_x, start_y, map)
if current_x == startx && current_y == start_y
// we arrived at the start!
return [{current_x,current_y}]

for (dir_index = 0; dir_index < 4; dir_index++)
if map[current_x+dx[dir_index]][current_y+dy[dir_index]] <
map[current_x][current_y]
return reconstruct_path(current_x+dx[dir_index],
current_y+dy[dir_index], start_x, start_y, map) +
[{current_x,current_y}]
return []

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

Our function will take the following parameters:
- current_xand current_y representing the current X and Y position in the
map
- start_xand start_y representing the initial origin of the algorithm’s start
- map representing the 2d array where the algorithm was applied

The first thing we need to check is if we have arrived at the destination. That is the
end goal of this function. If we do reach the end, we return a list with a single pair:
the current_x and current_y which are the same as start_x and start_y.

If not, then it means we are not done! For each possible direction, we need to check
where the step decreases from our current one. When such a step is found, we can
restart the algorithm from that point on.

This can only be done by returning the future list of steps combined with the
current one.

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

PROs/CONSs of Breadth-First Search

PROs

- Easy and fast to implement

- Easytodebug

- Easytovisualize

- Canbe used in different scenarios, not only pathfinding

CONs

- Slower than A*
- Not quite useful for large datasets

BFS can be used for quick custom implementations. Alternatively, you can use the
already created A* implementation in Godot. They do work similar but A* is more

efficient.

In the next chapter we will look at Godot’s Navigation mesh implementation and
how to use it.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

Navigation mesh in godot

If you use 3D objects to define your terrain you are in luck! Godot provides a
solution for you out of the box - enter the NavMesh.

It’s quite easy to create and use a navmesh.

Godot provides 2 key nodes for it: the Navigation and the NavigationMeshInstance.

A MNavigation
Fi NavigationMeshInstance
H Ground
H Obstaclel
H Obstacle3
El Obstacle2
H Obstacles

©
0]
©
©
©
0]
©

Once you have the NavigationMeshInstance parented to the Navigation node, you
can include the map or the parts you want the AI to move on as children of the Nav
mesh instance.

Once this step is completed, you need to select the navmesh instance and hit the
bake navmesh.

Transform View & Bake NavMesh #£)

:-Perspective

Once the generation is done, it will be clearly visible in the editor view.

Congratulations! You just generated your first navmesh.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

To generate a path sequence with a NavMesh, you must do the following:

- Inthe script of the Al you need a variable to point to the Navigation Node
- Usenav.get_simple_ path

The code should look like this:

onready var nav = get_ parent() # the Al needs to be parented to the Navigation
func get_ custom_ path(target_pos):

var path = nav.get_ simple_ path(global_ transform.origin, target_ pos)
return path

Now, if you specify a target value that is on the navmesh, this function will return a
sequence of steps that the Al can take to reach it.

Currently Godot 3 does not support dynamic objects in a navmesh, only static,
baked at edit time. Godot 4 on the other hand, has this planned so keep an eye on it.

This is the final lesson from this chapter! Congrats for reaching this far! You are
halfway into the course already.

In the next section we will look at sensors, or how the Al can perceive what’s
happening around it.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

Sensors

Sensing the Game World

In order for an Al Agent to take actions in the game there are two important
factors: understanding the environment (which we discussed in a previous
module) and sensing the threats/targets/items/etc.

There are many senses that can be implemented in an Al e.g. sight, hearing, hit
detection.

In this module we will focus on two of the most important ones:

- Seeing the enemy. This includes detecting everything in the AI’s range,
filtering only for the cone of view and, lastly, using raycasts to detect objects
that might occlude the target.

- The other sense is hit detection. This one is needed to detect when the player
shoots at the AT Agent in order to retaliate.

Let’s look at each one of the sensors, how they are implemented and how we can
use them in a real scenario.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

Implementing Range

Let’s start with range. First, we need to define what is range, what should the
sensor do, what are its targets and how it can work.

Range can be visualized using a sphere that has its center point in the AI Agent. The
sphere can be bigger or smaller. Based on this, the Al will have a bigger range or a
smaller one.

Let’s limit the sensor to only enemies. But it can be extended very easily to support
other points of interest such as pickable items, cover areas and more.

The sensor will use a list that will be constantly updated with the targets as they are
coming in the range or moving out of it.

We will also use Godot’s event system called signals. They will be triggered when
an enemy target has either entered the range or left it.

Let’s look at the code now.

If you run this example, you can see when the Al Agent detects the target and when
it does not.

By only implementing this, the enemy will have eyes in its back as well. In most
cases, we don’t want that. Enemies usually have a cone of view like a real person’s
field of vision.

Let’s look at the next tutorial on how we can implement this functionality.

Ultimate Godot Game AI for Beginners | Redefine Gamedev 2022

Field of View

Finding out what targets are around the AI Agent might not be ideal in most
situations. We want to have Als that behave like humans. Human’s field of view is
limited by the eyes.

Here comes the field of view. Basically, field of view or FOV, is an area specified by
the forward direction of the agent and an angle. What is within it, it will be visible.

For this we will need to make use of a little math.

What we want to achieve is a function that receives a target and returns TRUE or
FALSE if it is inside the field of view of the AI Agent.

We will need 4 parameters internally:

- The position of the AT Agent

- The forward vector for the Al Agent
- The target which we want to check
- And, The field of view in degrees

First we need to determine the direction from the Agent to the target. We can
achieve this by calculating the difference between the target’s position and the Al
Agent’s position. Once we have this, we can normalize its value. Vector
normalization means that all the values are clamped to the [0,1] interval.

Once we have the direction, we need to calculate the dot product between the vector
that represents the forward direction and the difference vector (or the direction).

We need to check if the value is greater than the cosine of the field of view angle.

Now we will make a second function that will be used from the AI Agent to filter the
targets.

If you check the example provided you can see how the field of view detects or not
the target by moving it around.

Now that we have the range detector and the field of view detector there is one final
step for detecting targets. We need to determine if a target is behind an obstacle or
not. The first two sensors will say that the target is visible so they are not enough.

In the next lesson, let’s look at raycasts and how we can use them to determine if
the AI Agent actually sees a target or not.

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

Raycasts

Now that we can determine if a target is in range and in the field of view, we also
need to determine if the target is not occluded by an object like a box or other
environment prop.

To do this, we will use raycasting. Raycasting is the process of generating a ray, a
line, from the AI Agent towards the target. If the ray intercepts something in
between, we will return FALSE and if the ray successfully hits its target, then the
result will be TRUE.

Raycasts in Godot can be implemented in code but there is a nicer way, provided by
the engine. Using the RayCast Node. This node will cast a ray from its position to
the cast to point. If it’s enabled, it will also detect collisions.

As for the raycast detector script, we need to get a target and set the ray to point on
it. The next step is to check the collision and see if it’s the same as the target or not.

Let’s look at the demo provided and see how it works.

With all these sensors in place: range, field of view and raycasts our Al Agent can
properly determine what target it can see.

The next step is to alert the Al if it's being fired upon from behind.

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

Hit Detection

What happens if the Al Agent gets attacked from behind? In this case it would be a
good idea to retaliate as, otherwise, the Al might seem unresponsive.

The hit detection is a little different from the previous sensors. The main logic is
for the projectile that hits a target to call a specific function inside it.

This will alert the AT Agent that hits are taken and it will prompt a defensive or
offensive action.

For this we need to prepare a couple of things:

1. Create a bullet instead of the target
2. Use an Area to detect collisions
3. Attach a collision shape to match the bullet

In the bullet’s code, we first need to set up the signal coming from the area, called
body_ entered. Now we know that a collision was detected. The next step is to find
out if the object we hit has the function called “register_ hit”.

The collision is detected at the KinematicBody level so we need to get the parent
which is the AI Agent. Next, we check if there is a function and call it.

In the AI Agent register it needs to be implemented as well.

Once everything is in place, let’s test the project and see the result. Every time the
projectile enters the Al’s physics body it will trigger a hit event.

This can be further processed into decisions.

Now that we covered how to deal with sensors, state machines, let’s head over to
the last step in this course: creating a fully-functional AT Agent that will use all of
this.

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

Project State Machine Al

e project overview

Top down hack slash where the enemies need to engage close range and patrol.
There are a couple of different AI types from no-brainer to the one that can use
smart objects against the player.

What we will be creating (5min)

Defining the AI (5m)

Creating the FSM (10m)

Hooking up the FSM with the code (10min)
Implementing Actions (20min)
Implementing Cover (15min)

Putting everything together (20m)

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

Bonus

Quick introduction to programming

If you are a beginner in programming, don’t skip this!

Since we will be using code to implement various systems, it’s always a good idea
to get up to speed. All the code will be in GDScript, Godot’s native scripting
language.

Let’s look at the core building blocks and how to use them to create more complex
functionalities.

Variables - they are used as data containers. They can store numbers, strings, even
more complex things as objects, materials and whatever the developer needs.

They do come in more shapes as sizes. Usually, when creating a new variable it can
store only one thing at a time. This is good for values like Hitpoints, Damage,
Speed, etc.

When we need a list of elements, let’s say a list of words, we can use Lists. Lists or
arrays are also variables. The main difference between them is the fact that they
can store multiple values, chained one after another. They are good to store groups
of items: Inventories, enemies, projectiles.

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

Operators - with variables alone we can’t do much. Not even store data. Not
because they cannot, but because we cannot put data inside of them without the
use of “=” equals operator.

Let’s create 3 variables A, B and C and assign them 1, 2 and, lastly, a sum of both A
and B, in C. Notice we have used another operator to do that, +.

Here are some other common operators used in GDScript: -, *, /, and/&&, or/||
You can find the full list in the link down below. But this is a good start.

Now that we can store and manipulate values, we need to talk about the execution
of the code. This happens from top to bottom, line by line. But having a list of
instructions doesn’t really make anything useful.

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

Here is where the flow control comes into play. In order to have branching code
that does not do the same thing every time we execute it, we need to make use of
instructions such as if, else and match.

A simple example would be to check the value of a number and show different
answers based on that. If we run the code and change the value, we can see that the
response gets changed accordingly.

The match instruction offers more flexibility. We need to provide an expression
and then, based on the single value it returns, to get a code branch.

Let’s take for example a string that can be of different types.

Flow control does not stop at if, else and match! The code can also be repeated
using while and for instructions.

While can be used to decrease values. Let’s see an example.

For can be used to enumerate lists of elements for numbers. Let’s enumerate a list
and numbers.

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

Once you start writing code, you will find out that parts of the code repeat
themselves. This is normal in programming. When you happen to find this kind of
pattern, you can make it reusable by creating a function.

A function is a separate piece of code that can be called on demand, by specifying
its name in the execution. Here is an example of add(x, y).

Good to take note here: Function and method are used interchangeably in most
cases, but there is a difference: functions can be stand alone while methods are
bound to a specific class. But what is a class?

What happens when we need a different data type combined with specific
functionality. Let’s say a player that has a function to take damage. In this case, we
can use a class.

A class can be defined by simply the class instruction and a name on top of any
script.

We can make use of a class in another script. Another advantage of classes is that
they can be inherited. That means that all their variables and functions trickle
down to their children while adding more functionality.

Let’s take the simple example of a base enemy which has health and take damage.
Then, we can proceed and inherit from that to create a soldier, a big boss and
whatever enemy type we need.

Now that we know what a function is, let’s take it one step more: enter recursive
functions. When a function has calls to itself it’s called a recursive function.

But having calls to itself might lead to infinite loops! This is a common issue when
implementing recursive functions. Luckily, there are ways to mitigate this. One of
them is using what is known as “exit conditions”. They provide a way to exit the
recursive loop.

Let’s look at this small example of a function that prints 5 numbers.

That concludes the programming primer! For more about GDScript, I’ve linked
some great resources below.

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

Data Structure Concepts

What are Data structures

In order to implement Game Al we need ways to store information. And sometimes
variables and lists are not enough.

Arrays or Lists are data containers of the same type, chained together. This creates
theideaofalist. E.g. [1, 2, 3, 4, 5]isalistof 5elements:123 4 5.Alistcan
also be a string “Hello World”. They have a lot of use-cases in general purpose
programming and also in developing games.

The next step is to take it to another dimension: 2D Arrays are basically grids of
elements of the same type.
E.g.

This is very similar to a keypad. This can definitely work as a keypad
implementation!

The Queue

Another important piece of the puzzle is the data structure Queue. This one has a
particularity: it is an abstract data type. An abstract data type means that it can be
implemented in multiple different ways.

A Queue is a List (an Array) with 2 or 3 functionalities:
- You can only add elements at the end of it (push())
- You can only take the first element (pop())
- Youcan only see what is the first element (peek())

It is very similar to a real-life cinema queue.
pushi5)

pop() -= 1
= || 23|45

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

Why would we need such a restrictive structure? The answer is simple: some
algorithms make use of it in their implementation because they need sequenced
values that also have a particular order.

The Graph

Before we can understand Graphs better, let’s look at some other common data
storage options for coding:

- Variables: they can contain one value of a data type (number, character)
- Lists (or arrays): they contain a series of variables of the same data type
- Multidimensional List: contains a grid of variables of the same data type

A node in the graph represents a container - either for data, numbers, actions, etc
- and a connection (or edge) represents a connection between two different nodes

in a graph.
3 |5 T
@ 'r;llr /;('-.J.-..'.-
| ,ffb e

b P S

EDGES

What can the Graph be used for?
- State Machines
- Mapping the streets in a city
- Creating regions on a map

Implementing Graphs

Graphs are an abstract data type - in practice, that means that they don’t have a
“fixed” implementation and there are multiple ways to create one.

As described before, graphs contain two lists:
- Thenodes
- The links between (edges)

Let’s look at some of the most common graph implementations out there.

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

2D Array implementation

For this one, we will make use of a 2d list of elements (grid) with the following
specification: each row and column number represents an unique node. If the
variable contained there is true, then that means there is a connection between

them.

s

2 1 1 1 1 a “\'I
0
3 a 1 1 8 a =

I'I

\ Fa

"‘u .-;

LS

2
s{e|e|e/|1]|1 C

‘_.I'
‘_.I'
r

» ©

r
ry

_H\ﬂ:/

Godot by default does not support 2D Arrays. Luckily, there is a free addon called

GodotNext which provides this exact functionality.

var grid:Array2D = Array2D.new()

func _ready():
grid.resize(6, 6)

foriin range(6):
for j in range(6):
grid.set_ cell(i, j, 0)

grid.set_ cell(y, 2, 1)
grid.set_ cell(2,1, 1)

grid.set_ cell(2, 3, 1)
grid.set_ cell(3, 2,1)

grid.set_ cell(2, 4, 1)
grid.set_ cell(4, 2, 1)

grid.set_ cell(4, 5, 1)
grid.set_ cell(5, 4, 1)

Directed graph
A special type of Graph - The Directed Graph

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

Sometimes when we traverse a graph, we don’t want to go back the same way we
came - or even not go back at all. For this, another concept is needed: a graph that
has its edges one-way. This allows more control regarding what nodes can be
visited and when.

Graph traversal methods

A graph is a great data structure that can be used to store a lot of information. In
order to access and use that information, we need to use what is called a traversal
method, or a way to get from element to element.

The most common ways to achieve this are Breadth-First Search (BFS) and
Depth-First Search (DFS).

Before we dive into each method, let’s create a simple graph to work with. This is
how it looks. We will make use of a grid representation for this implementation.

BES

The Breadth-First search focuses on expanding at the same time in all directions.
You can think of it as water ripples that have a starting point and move outwards.

If we were to run a BFS search on this graph, the result will be: 1,2, 3, 4, 5

In order to implement a BFS we will make use of a Queue. If you don’t know what a
Queue is, then revisit the chapter “Data Structures”. Implementation and examples
are included there.

For the full BFS implementation, check the Pathfinding module.
DFES

to traverse a graph means for a given point to enumerate the connections from
neighbor to neighbor. A matrix implementation can be traversed as following:

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

current_point = 1
visited = []

parse_graph(current_point)
log(current_point) // display the current point
visited[current_point] = true
for (i = ©; i < max_nodes; i++)
if (i == current_point)
continue // skip the current node
if (graph[current_point][i] == true && visited[i] == false)
parse_graph(i)

This is one of the standard ways to implement a Graph. Its advantage is that, in
only one instruction we can determine if there is a connection between a pair of
nodes.

This method of traversing a Graph is called Depth-First Search and uses recursion.
Recursion when a function calls itself. This can create an infinite loop, so we need
to make sure that there are exit conditions. In this case, there will be a point where
all the neighbors will be visited and the function won’t get called again.

DFS Example: 1, 2,3,6,3,2,4,7,8,7,4,5,9,5, 4, 2,1

(e
6600
(D)

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022

